Copied to
clipboard

G = C22×C32⋊A4order 432 = 24·33

Direct product of C22 and C32⋊A4

direct product, metabelian, soluble, monomial

Aliases: C22×C32⋊A4, C621A4, C242He3, (C6×A4)⋊2C6, C23⋊(C2×He3), C6.17(C6×A4), (C2×C62)⋊7C6, C6214(C2×C6), (C2×C6).6C62, C22⋊(C22×He3), (C22×C62)⋊1C3, C323(C22×A4), (C23×C6).10C32, (A4×C2×C6)⋊2C3, C3.5(A4×C2×C6), (C3×C6)⋊2(C2×A4), (C3×A4)⋊3(C2×C6), (C2×C6).26(C3×A4), (C22×C6).11(C3×C6), SmallGroup(432,550)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C22×C32⋊A4
C1C22C2×C6C62C32⋊A4C2×C32⋊A4 — C22×C32⋊A4
C22C2×C6 — C22×C32⋊A4
C1C2×C6C62

Generators and relations for C22×C32⋊A4
 G = < a,b,c,d,e,f,g | a2=b2=c3=d3=e2=f2=g3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg-1=cd-1, de=ed, df=fd, dg=gd, geg-1=ef=fe, gfg-1=e >

Subgroups: 727 in 224 conjugacy classes, 50 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C23, C32, C32, A4, C2×C6, C2×C6, C24, C3×C6, C3×C6, C2×A4, C22×C6, C22×C6, He3, C3×A4, C62, C62, C22×A4, C23×C6, C23×C6, C2×He3, C6×A4, C2×C62, C2×C62, C32⋊A4, C22×He3, A4×C2×C6, C22×C62, C2×C32⋊A4, C22×C32⋊A4
Quotients: C1, C2, C3, C22, C6, C32, A4, C2×C6, C3×C6, C2×A4, He3, C3×A4, C62, C22×A4, C2×He3, C6×A4, C32⋊A4, C22×He3, A4×C2×C6, C2×C32⋊A4, C22×C32⋊A4

Smallest permutation representation of C22×C32⋊A4
On 36 points
Generators in S36
(1 11)(2 10)(3 12)(4 7)(5 9)(6 8)(13 36)(14 34)(15 35)(16 32)(17 33)(18 31)(19 25)(20 26)(21 27)(22 30)(23 28)(24 29)
(1 10)(2 11)(3 7)(4 12)(5 8)(6 9)(13 21)(14 19)(15 20)(16 28)(17 29)(18 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 5 3)(2 6 4)(7 10 8)(9 12 11)(13 14 15)(16 18 17)(19 20 21)(22 24 23)(25 26 27)(28 30 29)(31 33 32)(34 35 36)
(1 2)(3 4)(5 6)(7 12)(8 9)(10 11)(16 23)(17 24)(18 22)(28 32)(29 33)(30 31)
(13 27)(14 25)(15 26)(16 23)(17 24)(18 22)(19 34)(20 35)(21 36)(28 32)(29 33)(30 31)
(1 17 19)(2 24 34)(3 18 21)(4 22 36)(5 16 20)(6 23 35)(7 30 13)(8 28 15)(9 32 26)(10 29 14)(11 33 25)(12 31 27)

G:=sub<Sym(36)| (1,11)(2,10)(3,12)(4,7)(5,9)(6,8)(13,36)(14,34)(15,35)(16,32)(17,33)(18,31)(19,25)(20,26)(21,27)(22,30)(23,28)(24,29), (1,10)(2,11)(3,7)(4,12)(5,8)(6,9)(13,21)(14,19)(15,20)(16,28)(17,29)(18,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,5,3)(2,6,4)(7,10,8)(9,12,11)(13,14,15)(16,18,17)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,33,32)(34,35,36), (1,2)(3,4)(5,6)(7,12)(8,9)(10,11)(16,23)(17,24)(18,22)(28,32)(29,33)(30,31), (13,27)(14,25)(15,26)(16,23)(17,24)(18,22)(19,34)(20,35)(21,36)(28,32)(29,33)(30,31), (1,17,19)(2,24,34)(3,18,21)(4,22,36)(5,16,20)(6,23,35)(7,30,13)(8,28,15)(9,32,26)(10,29,14)(11,33,25)(12,31,27)>;

G:=Group( (1,11)(2,10)(3,12)(4,7)(5,9)(6,8)(13,36)(14,34)(15,35)(16,32)(17,33)(18,31)(19,25)(20,26)(21,27)(22,30)(23,28)(24,29), (1,10)(2,11)(3,7)(4,12)(5,8)(6,9)(13,21)(14,19)(15,20)(16,28)(17,29)(18,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,5,3)(2,6,4)(7,10,8)(9,12,11)(13,14,15)(16,18,17)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,33,32)(34,35,36), (1,2)(3,4)(5,6)(7,12)(8,9)(10,11)(16,23)(17,24)(18,22)(28,32)(29,33)(30,31), (13,27)(14,25)(15,26)(16,23)(17,24)(18,22)(19,34)(20,35)(21,36)(28,32)(29,33)(30,31), (1,17,19)(2,24,34)(3,18,21)(4,22,36)(5,16,20)(6,23,35)(7,30,13)(8,28,15)(9,32,26)(10,29,14)(11,33,25)(12,31,27) );

G=PermutationGroup([[(1,11),(2,10),(3,12),(4,7),(5,9),(6,8),(13,36),(14,34),(15,35),(16,32),(17,33),(18,31),(19,25),(20,26),(21,27),(22,30),(23,28),(24,29)], [(1,10),(2,11),(3,7),(4,12),(5,8),(6,9),(13,21),(14,19),(15,20),(16,28),(17,29),(18,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,5,3),(2,6,4),(7,10,8),(9,12,11),(13,14,15),(16,18,17),(19,20,21),(22,24,23),(25,26,27),(28,30,29),(31,33,32),(34,35,36)], [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11),(16,23),(17,24),(18,22),(28,32),(29,33),(30,31)], [(13,27),(14,25),(15,26),(16,23),(17,24),(18,22),(19,34),(20,35),(21,36),(28,32),(29,33),(30,31)], [(1,17,19),(2,24,34),(3,18,21),(4,22,36),(5,16,20),(6,23,35),(7,30,13),(8,28,15),(9,32,26),(10,29,14),(11,33,25),(12,31,27)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E···3J6A···6F6G···6AR6AS···6BJ
order1222222233333···36···66···66···6
size11113333113312···121···13···312···12

80 irreducible representations

dim11111133333333
type++++
imageC1C2C3C3C6C6A4C2×A4He3C3×A4C2×He3C6×A4C32⋊A4C2×C32⋊A4
kernelC22×C32⋊A4C2×C32⋊A4A4×C2×C6C22×C62C6×A4C2×C62C62C3×C6C24C2×C6C23C6C22C2
# reps1362186132266618

Matrix representation of C22×C32⋊A4 in GL4(𝔽7) generated by

6000
0100
0010
0001
,
1000
0600
0060
0006
,
2000
0100
0020
0004
,
1000
0200
0020
0002
,
1000
0600
0010
0006
,
1000
0100
0060
0006
,
1000
0010
0001
0100
G:=sub<GL(4,GF(7))| [6,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[2,0,0,0,0,1,0,0,0,0,2,0,0,0,0,4],[1,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[1,0,0,0,0,6,0,0,0,0,1,0,0,0,0,6],[1,0,0,0,0,1,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C22×C32⋊A4 in GAP, Magma, Sage, TeX

C_2^2\times C_3^2\rtimes A_4
% in TeX

G:=Group("C2^2xC3^2:A4");
// GroupNames label

G:=SmallGroup(432,550);
// by ID

G=gap.SmallGroup(432,550);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,353,2287,3989]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^3=d^3=e^2=f^2=g^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g^-1=c*d^-1,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

׿
×
𝔽